

Performance & Burn In Test Rev. 1.0

Table of Contents

1. Overview

2. Performance Measurement Tools and Results

- 2.1 Test Platform
- 2.2 Test target and Used SATA III SSD
- 2.3 Install Hardware
- 2.4 BIOS & Windows 7 OS environment setup
- 2.5 SSD I/O Performance impact factors
- 2.6 CrystalDiskMark 3.0.1 x64 performance test
- 2.7 AS SSD Benchmark 1.7 performance test
- 2.8 HD Tune Pro 5.5 performance test
- 2.9 AnvilBenchmark performance test
- 2.10 TxBENCH performance test

3. Burn In Tests and Results

3.1 BurnInTestv7.1 Pro burn in test

4. Summary

1. Overview

AD906A adapters, support 67pin B key type connector to convert M.2(NGFF) SSD into SATA III 7+15pin standard interface.

2. Tools and Results of Performance Measurement

2.1 Test Platform

M/B: ASUS P8P67

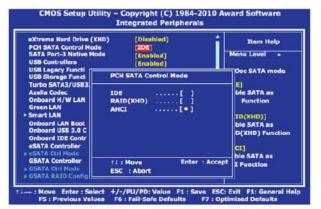
CPU: Intel **i5-2500**, 3.3MHz/ 6G Cache/ 5GT

Memory: Kingston KVR1333D3N9K2/4G, DDR3-1333MHz,4G(2GB DIMM*2)

ATX Power: TC START W500, 500W ATX,12V V2.2 Power Supplier

Graphic: MSI , R6700 / AMD HD 6700 Series
OS: Microsoft Windows 7 64bit OS

2.2 Test target: AD902A,D,F adapter and SSD(LITE-ON LGT-128M6G)



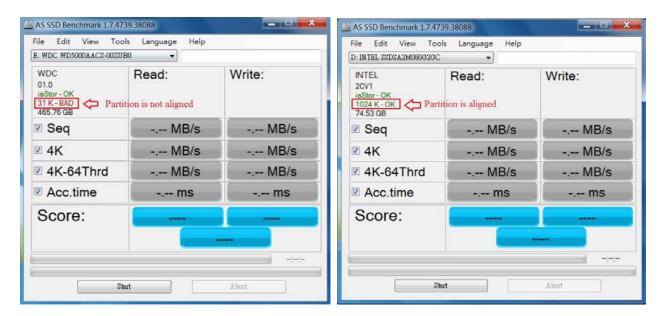
2.3 Install Hardware

Insert M.2(NGFF) SSD(LITE-ON LGT-128M6G) into AD905A converter's M.2 67pin B key connector, and then with coppers, and screws to fix SSDs. Connect AD906A converter to SATA III Port of ASUS P8P67 motherboard.

2.4 BIOS & Windows 7 OS environment setup

2.4.1 In BIOS(Basic Input/Output Setup) – Change IDE Mode into AHCI Mode

2.4.2 Partition Alignment & I/O Alignment


Windows XP and Windows Server 2000/2003 start partition offset at 31.5KB (32,256 bytes). Due to this misalignment, clusters of data are spread across physical memory block boundaries, incurring a read-modify-write penalty. As a result, the SSD controller must write up to 200% more data to the flash than is sent from the host to the drive.

When choosing a partition starting offset, Storage Systems recommends that system integrators correlate the partition offset with the RAID stripe size and cluster size to achieve optimal SSD I/O performance. As following Figure shows an example of a misaligned partition offset and an example of an aligned partition offset for Windows Server.

Misaligned Partition os NAND Flash Mem. Blocks Aligned Partition OS NAND Flash Mem. Blocks Partition Offset Cluster Size Result (Partition Offset + RAID Stripe Size) RAID Stripe Size 31.5K / 128K = 0.49 (non-integer) Misalignment 64KB (65,536 bytes) 64KB default setting 1MB(1,048,576 bytes) Windows 7/2008 Server default setting 64KB (65,536 bytes) 1,024KB / 64KB = 8 (integer) Alignment 64KB

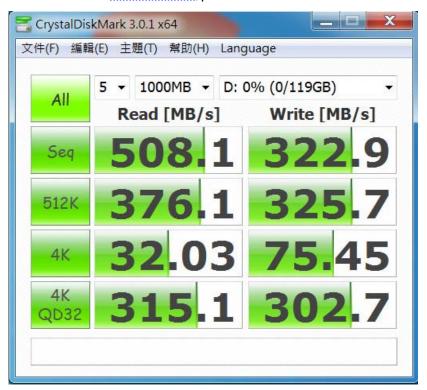
Misaligned Partition vs. Aligned Partition

XUsing AS SSD Benchmark viewing partition is aligned

XUsing AS SSD Benchmark to check vendor AHCI Drive is installed

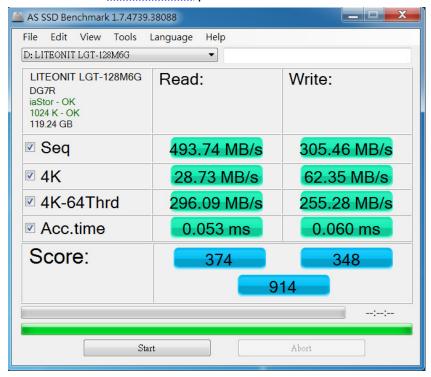
- 2.4.3 In Windows 7, formatted SSD to NTFS Mode. Don't install any program. Because FAT32 previous versions do not support NCQ, recommended formatted NTFS file mode.
- 2.4.4 AHCI support Queue CommandAHCI queue command protocol allows each disk contains 32 commands. so QD(Queue Depth) is 32.
- 2.4.5 SSD Write Cache SettingEnable the Write Cache setting in Windows 7.

2.5 SSD I/O Performance impact factors

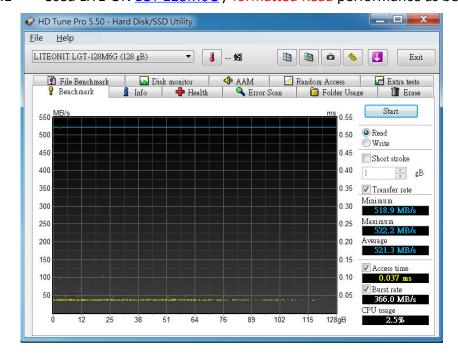

- 2.5.1 SATA I/O performance -- depending on the SSD Controller IC
- 2.5.2 SATA I/O performance -depending on the NAND Flash IC.
 - 2.5.2.1 Toggle DDR mode or ONFI synchronous NAND Flash IC, will show good performance
 - 2.5.2.2 Traditional asynchronous or SDR NAND Flash IC, will show poor performance

Suggestion:

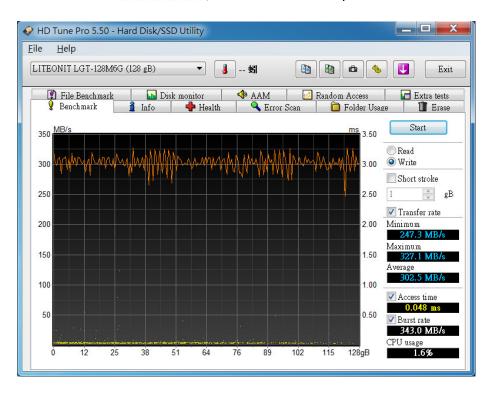
Please use the motherboard containing native SATA 6Gb/s Port testing, can provide more correct I/O performance. (Such as Intel 6 Series chipsets or AMD 9 Series Chipsets). If you are using a motherboard plus SATA III host bus adapter, non-native 6Gb/s Port or SATA to PCI-e adapter provides 6Gb/s Port. I/O performance testing will be very much lower than the native SATA III Port.


- 2.6 CrystalDiskMark 3.0.1 x64 performance test

 - 2.6.1 Used LITE-ON_LGT-128M6G performance as below:


2.7 AS SSD Benchmark 1.6 performance test

2.7.1 Used LITE-ON LGT-128M6G performance as below:



2.8 HD Tune Pro 5.5 performance test

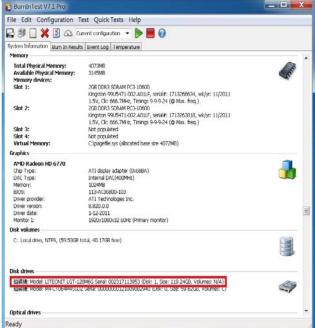
2.8.1 Used LITE-ON LGT-128M6G / formatted Read performance as below:

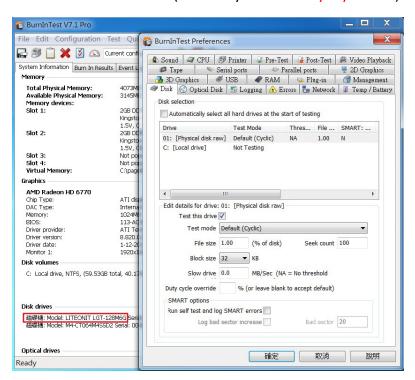
2.8.2 Used LITE-ON LGT-128M6G / unformatted Write performance as below:

2.9 AnvilBenchmark RC6

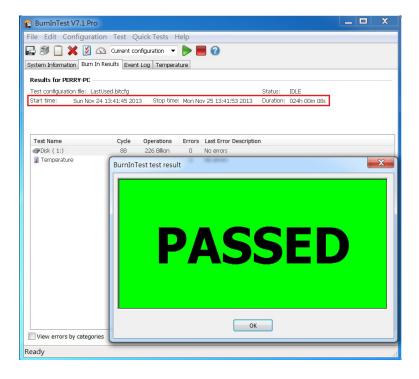
2.9.1 Used LITE-ON LGT-128M6G performance as below:

2.10 TxBENCH V0.95 beta


2.10.1 Used LITE-ON LGT-128M6G performance as below:


Burn In Tests and Results

- 3.1 BurnInTest v7.1 Pro
 - 3.1.1 **system information** for LITE-ON LGT-128M6G as below:



3.1.2 show Disk test mode(default cyclic -- 10 ways cycle test)

3.1.3 show LITE-ON LGT-128M6G 24-hour Burn-in test PASSED

4. Summary

- 4.1 LITE-ON_LGT-128M6G SSD is SATA III Interface, I/O speed, max. to 600MB/s.
- 4.2 AD906A adapter I/O performance is based on M.2(NGFF) SSD